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Mixed-region collapse in a stratified fluid 
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A simplified theoretical model of a collapsing mixed region in a stably stratified 
fluid, as studied experimentally by Wu (1969), is presented. Unlike previous 
work the model describes the mixed region itself in the ‘principal stage’ of 
collapse. An inertia-buoyancy balance assumption is invoked, resulting in good 
quantitative agreement with Wu’s results. 

1. Background 
When an object mova horizontally at speed through a stably stratsed fluid 

it generates a turbulent wake, the longitudinal variation of which is small 
compared with its transverse variation (Schooley & Stewart 1963). To model the 
subsequent almost two-dimensional lateral spread, Wu (1969) conducted labo- 
ratory experiments on the gravitational collapse of a homogeneous circular 
cylinder of water at its equilibrium level in a salt-stratified environment. 

The experiments of Schooley & Stewart (1963) showed that the mixed-region 
collapse is accompanied by excitation of internal waves in the stratified environ- 
ment and this aspect of the problem has received considerable attention from Wu 
(1969), Mei (1969) and later writers. 

A proper mathematical study of the mixed-region collapse itself is much more 
difficult than a study of the internal waves generated in the far field by the 
collapse because of the essential nonlinearity of the former problem. Thus Mei 
(1969), neglecting viscosity, considered the stratified fluid to be in hydrostatic 
equilibrium and used the long-wave approximation to the behaviour of the well- 
mixed region. He obtained only order-of-magnitude agreement with Wu’s 
results however, and even then only for small times when the long-wave approxi- 
mation is invalid. Padmanabhan et al. (1970) also considered the stratified en- 
vironment to deform hydrostatically, ignoring any motions in that region. They 
solved numerically the inviscid problem with the potential function satisfying 
Laplace’s equation inside the well-mixed section and a hydrostatic pressure 
approximation to Bernoulli’s equation on its interface. The solution was in only 
fair agreement with Wu’s results, probably owing in part to an error in the 
approximation to the interface condition used. 

Wessel (1969), Young & Hirt (1972) and Orlanski & Ross (1973) have all 
performed numerical experiments on the collapse of a well-mixed region in a 
stratified environment, including the interaction of the two regions. With varying 
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degrees of sophistication they each obtained fair agreement with the results of 
Wu (1969). 

It seems that the only theoretical work which considers the reaction of the 
environment on the mixed region is the linearized treatment of Hartman & 
Lewis (1972). However their analysis is valid only for a partially mixed region: 
that is, the deviation from the mean environmental stratification in the initially 
circular collapsing region must be small. Viscous effects are not included, so the 
analysis becomes invalid for large times, breaking down first at the interface of 
the deforming, partially mixed region. Even so it gives a good idea of the be- 
haviour of a fully mixed region for small times, when the omission of viscous 
effects can be justified. Hartman & Lewis found that the horizontal and vertical 
velocities for Y < a, (the initial radius of the partially mixed region) behave like 

2€X 2-52 
u = - J,(Nt),  w = -- J,(Nt), 

Yt Yt 

where e ( < y )  is the initial disturbance inside r = a, to the environmental density 
gradient poy (=  poN2/g;  see figure 1) and J, is the second-order Bessel function 
of the first kind. Thus the fluid particles inside r = a, initially move on right 
hyperbolas, overshooting their ultimate positions on the first pass. The initially 
circular section deforms into an ellipse with oscillations around this shape. It 
must be because of such behaviour in the fully mixed problem (cf. Wu 1969, 
figure 2 (b ) ,  stage 2) that internal waves are generated so readily. 

To simulate accurately the interaction of the mixed region and environment 
requires complex numerical procedures such as the marker-and-cell technique 
used by Young & Hirt (1972). However, with the above comments in mind, the 
following approximate model of the two-dimensional gravitational collapse of an 
initially circular section of inviscid, non-diffusive, homogeneous fluid at  its 
equilibrium level in a linearly stratified Boussinesq fluid is considered. No attempt 
is made to model the initial unsteady behaviour. This part of the collapse, 
occupying only one or two buoyancy periods at the most, is one of rapid adjust- 
ment from a motion with constant acceleration (inherent in the fluid motion 
starting from rest; see Mei 1969) to a decelerating motion. Rather, it  is the 
‘principal stage’ of collapse (Wu 1969) extending over 3 < Nt < 25 which is 
considered, but even here the interaction of internal waves with the collapsing 
region is only implicitly assumed. 

2. Simplified inviscid model of mixed-region collapse 
Consider the collapse of the initially circular mixed region (figure 1). If the 

pressure were uniform on the surface X of the section, Longuet-Higgins (1972) 
has shown that subsequent deformation of 8 would be as an ellipse. In  a gravita- 
tionally stratified environment the pressure on X is of course not uniform, but 
even so Hartman & Lewis (1972) have shown that S deforms as an ellipse for the 
partially mixed problem at least for small times. Mei’s (1969) analysis, valid for 
large times, showed that an elliptic section continues to deform as an ellipse. 
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FIGURE 1. Definition sketch of the model of mixed-region colIapse. 

It is assumed here that the initially circular mixed region, which deforms 
without rotation, maintains an elliptic shape at all times. Thus, with b and a 
the major and minor axes of the elliptic interface S(x,  z = b, t ) ,  as indicated in 
figure 1, X is defined by 

The fluid inside X is irrotational so there the velocity potential #I satisfies 

x2/b2 + (;‘/a’ = I. (2.1) 

V2#I = 0 with u = a@x, w = 84/82. (2.2) 

Then, if the lengths of the axes of the ellipse are changing at the rates 6 = ub 
and u = w,, the velocity potential satisfying (2.1) and (2.2) may be expressed 

where 6/b + a/a = 0. This relation mereIy expresses conservation of area in S:  

ab = a!, (2.4) 

where a,, is the radius of the initial circular section. It follows from (2.3) that 
inside S 

u = A x ,  W =  -Az.  (2.5) 

A = b/b is a function of time only. The instantaneous streamlines are rectangular 
hyperbolas. 

Wu (1969) demonstrated that in the ‘principal stage’ of collapse the motion 
obeys internal Froude number scaling. It is postulated here that in the ‘principal 
stage’ the collapse happens so slowly that an instantaneous balance is maintained 
between horizontal inertia forces and buoyancy forces so far as the motion of the 
mixed region is concerned. Evidently just enough of the potential energy lost 
by the collapsing region goes into radiated ‘internal waves’ and (in practice) 
dissipation along its boundaries for the balance to hold. For the mixed region, 
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then, a local internal Froude number is said to be time invariant in the ‘principal 
stage’: 

N is the ambient buoyancy frequency (gy)*. Fr is a function of x/b only and 
varies smoothly from a value of zero at  x/b = 0 to infinity at x/b = 1. An internal 
Froude number % characteristic of the mixed region as a whole is obtained by 
averaging over the section 8: 

5 = J:Frd(x/b). 

Fr = u/N{ = O( l), independent of time. (2.6) 

By (2.1)’ (2.2) and (2.5)’ 

= Ab/Na, (2.7) 

i.e. Fr = ub/Na, a constant. (2.8) 

ub is the horizontal nose velocity of the mixed region at x = b. Note also that 
% = E’r(x/b) when x /b  = 1/42. % is of the same form as that obtained for the 
continuous lateral intrusion of fluid into a stratified environment (Manins 1976). 
This is because much the same dynamics are involved, but of course the geometry 
and kinematics are quite different. 

The behaviour of the section may easily be obtained: from (2.8) and (2.4) 

(2.9) 

(2.10) 

where %b = 6 and w, = ci. The initial conditions used in (2.9) and (2.10), viz. 
b = a = a, a t  t = 0, while not being strictly correct since the model holds only 
in the ‘principal stage’ of collapse, are imposed to close the equations with only 

to be determined. Because the ‘initial stage’ of collapse represents only a 
small part of the whole range covered, discrepancies between the model and Wu’s 
experiment due to the choice of initial conditions in ( 2 . 9 ~ )  and ( 2 . 1 0 ~ )  are negli- 
gible in a plot like figure 2. 

Figure 2 compares (2.9a) for several values of %with Wu’s (1969) results and 
also with the MAC calculations of Young &, Hirt (1972). Wu’s (1969, table 1) 
upper tangent points, plotted in figure 2 and representing the observed approxi- 
mate changeover times from the ‘principal stage’ to the ‘final stage’ where 
apparently viscous forces predominate over inertia forces, are strangely at 
variance with Wu’s (1969, table 2) ‘best-fit’ curve. It may be seen that to an 
approximation well within Wu’s experimental uncertainties 

- 
Fr = % (2.11) 
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FIGURE 2. Plot of lateral extent of the mixed region aa a function of time. - 0-, Wu’s 
(1969) ‘best-fit’ cullre with maximum deviations observed indicated by vertical error bars; 
x , Wu’s ( 1969) tangent points ; V , data points from Young & Hirt (1 972). Present model : 
-0-, Fr = 3; -0-, Fr = Q; -n-, Fr = 2. 

- - - 

is a good choice for the model. The agreement is not particularly sensitive to 
5, which is O(1) as expected. Now in the range 3 -= Nt c 25 Wu found that 

b/a0 = 1.03( & 0.05) (Nt)0‘55(*002) (2.12) 

best fitted his results. For large Nt,  (2.9a) reduces to 

b/a0 ( $ ~ t ) +  = 1 4 2 ( ~ t ) 0 5 0 .  (2.13) 

The agreement between (2.12) and (2.13) is excellent, as is also evident from 
figure 2. The implication is that the collapse process is in a ‘constant Froude 
number regime’ for a major part of the time. 

An estimate of the time of onset of the ‘constant Froude number regime ’ may 
be made as follows. For an elliptic mixed region and hydrostatically deforming 
environment, the potential energy of the region a t  time t is 

PE(t )  = &rpoN2a3b. (2.14) 

The kinetic energy for small times may be found by approximating the flow in 
the environment as potential. Then 

K E ( t )  = &poC(t) A2ab(a2 +b2) ,  (2.15) 

where 2C(t) is the inertia coefficient (Lamb 1932, $114) for the ellipse. C(0) is 
unity and C(t )  decreases as the ellipticity for small times. At any time t = T then 

PE(0)  -PE(T)  = K E ( 7 )  +increase in energy of environment due to 
isopycnal distortions. (2.16) 

For small times, NT 5 3 say, the energy transferred to isopycnal distortions will 
be small. An estimated upper bound on the energy in internal waves observed 
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FIGIJRE 3. Velocities of the mixed region 8s a function of time according to the model. 
For Nt 2 1.3, -ub/wa = 1 + 23% Nt .  

- 

by Wu (1969, figure 5) a t  N r  = 3 is less than 30 yo of KE(7). This energy may be 
thought of as being accounted for by a modified C(t). Because the estimated 
transition time [see below, equation (2.20)] behaves like C(t)-+ for Nt small, a 
deviation from unity of C(t )  will have a very small effect. 

From (2.16) an expression for A valid for energy-conserving elliptic deformation 
is obtained: 

N2 a 1 - (a/ao)2 
c2 a, l+(a/ao)4~ 

A2 = - (-) (2.17) 

In  the constant Froude number regime, from (2.8), ( 2 . 5 ~ )  and (2.4) 

A2 = %2N2(a/a0)4. (2.18) 

The A’s given by relations (2.17) and (2.18) will be approximately equal in the 
transition from energy-conserving flow to a balance flow characterized by (2.8). 
With 5 given by (2.11) it follows that there 

a/ao 21 0.80 for C = 1. (2.19) 

An indication of the time which elapses before (2.19) is satisfied may be obtained 
by formally setting B = y and integrating (1.1 b).  Then a/ao = 2J,(Nt)/(Nt) and 
from (2.19) 

Nt N 1-3 a t  transition. (2.20) 

Figure 3 illustrates the calculated behaviour of the mixed-region velocities 
ub and w,. For Nt > 1 equations (2.9b) and (2.10b) are plotted while for Nt < 1 
the behaviour is approximated from (1.1). The segments are patched together 
in the changeover interval. It can be seen from figure 3 that the transition time 
(2.20) well represents the changeover region and delineates the change from 
accelerating collapse in the ‘initial stage ’ to decelerating collapse in the ‘principal 
stage’. 
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3. Discussion 
It has been shown that a model based on elliptic deformation and a steady 

balance between horizontal inertia and buoyancy describes well the collapse of 
a circular well-mixed region in a stratified fluid for a major part of the time of 
interest. A characteristic internal Froude number based on the lateral spreading 
velocity, maximum thickness of the mixed region and ambient buoyancy fre- 
quency takes a value near # for Wu’s (1969) results. 

Simple as the model presented is, it compares very favourably with complex 
‘ exact ’ numerical models in describing the collapsing region (compare figures 2 
and 3 with Young & Hirt 1972). 

The substance of this paper is part of the writer’s Ph.D. dissertation (Manins 
1973). A debt of sincere gratitude is owed to J. Stewart Turner for inspiration 
and example. The receipt of a Commonwealth Scholarship is also gratefully 
acknowledged. 
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